서정훈
서정훈은 한국의 위성/항공 이미지 분석 회사인 SI Analytics의 연구 센터 기술 책임자입니다. 동시에 KAIST HCI Tech Lab (지도교수: 윤상호 교수)에서 석사과정 중에 있습니다. 주요 업무 범위는 원격 탐사 응용을 위한 컴퓨터 비전 및 기계 학습에 대한 연구 프로젝트를 지원하고 관리하는 것입니다. 그 외에도 컴퓨터 그래픽스, 병렬 컴퓨팅, 그리고 인간-컴퓨터 상호 작용을 위한 지능형 센싱 기술 등에 관심이 있으며 유관 경험이 있습니다.
전문 분야
- 머신러닝, 컴퓨터 비전, 컴퓨터 그래픽스, 그리고 이의 원격 탐사로의 응용
- 고성능컴퓨팅에서의 병렬 컴퓨팅 및 GPGPU
- 인간-컴퓨터 상호작용을 위한 지능형 센싱 기술
경력
- 2020년 9월 - 현재, 인공지능연구소 기술 리더 & 공동 창업자 @ SI Analytics
- 2017년 7월 - 2020년 2월, 머신러닝 및 컴퓨터 비전 연구원 @ Satrec Initiative
학위
- 2023년 2월 - 현재, KAIST, 대전, 대한민국
- 문화기술대학원 석사 과정
- 2014년 3월 - 2021년 2월, GIST, 광주, 대한민국
- 학사, 전기전자 및 컴퓨터 공학 전공
출판 이력 (Google Scholar)
- Self-Pair: Synthesizing Changes from Single Source for Object Change Detection in Remote Sensing Imagery
Minseok Seo, Hakjin Lee, Yongjin Jeon, and Junghoon Seo
IEEE WACV. 2023. Link
- Geometric Remove-and-Retrain (GOAR): Coordinate-Invariant eXplainable AI Assessment
Yonghyun Park, Junghoon Seo, Bomseok Park, Seongsu Lee, and Junghyo Jo
NeurIPS Workshop. 2023.
- Prototype-oriented Unsupervised Change Detection for Disaster Management
Youngtack Oh, Minseok Seo, Kim Doyi, and Junghoon Seo
NeurIPS Workshop. 2023. Link
- Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim and Junghoon Seo
AISTATS. 2022. Link
- Quantile Autoencoder with Abnormality Accumulation for Anomaly Detection of Multi-variate Sensor Data
Seunghyoung Ryu, Jiyeon Yim, Junghoon Seo, Yonggyun Yu, and Hogeon Seo
IEEE Access. 2022. Link
- Contrastive Multiview Coding With Electro-Optics for SAR Semantic Segmentation
Keumgang Cha, Junghoon Seo, and Yeji Choi
IEEE GRSL. 2021. Link
- Training Domain-invariant Object Detector Faster with Feature Replay and Slow Learner
Chaehyeon Lee, Junghoon Seo, and Heechul Jung
CVPR Workshop. 2021. Link
- On the Power of Deep but Naive Partial Label Learning
Junghoon Seo and Joon Suk Huh
IEEE ICASSP. 2021. Link
- NL-LinkNet: Toward Lighter but More Accurate Road Extraction with Non-Local Operations
Yooseung Wang, Junghoon Seo, and Taegyun Jeon
IEEE GRSL. 2021. Link
- Revisiting Classical Bagging with Modern Transfer Learning for On-the-fly Disaster Damage Detector
Junghoon Seo, Seungwon Lee, Beomsu Kim, and Taegyun Jeon
NeurIPS Workshop. 2019. Link
- Deep Closed-Form Subspace Clustering
Junghoon Seo, Jamyoung Koo, and Taegyun Jeon
ICCV Workshop. 2019. Link
- Why are Saliency Maps Noisy? Cause of and Solution to Noisy Saliency Maps
Beomsu Kim, Junghoon Seo, Jeongyeol Choe, Jamyoung Koo, Seunghyeon Jeon, and Taegyun Jeon
ICCV Workshop. 2019. Link
- Bridging Adversarial Robustness and Gradient Interpretability
Beomsu Kim, Junghoon Seo, and Taegyun Jeon
ICLR Workshop. 2019. Link
- RBox-CNN: Rotated Bounding Box based CNN for Ship Detection in Remote Sensing Image
Jamyoung Koo, Junghoon Seo, Seunghyun Jeon, Jeongyeol Choe, and Taegyun Jeon
ACM SIGSPATIAL. 2018. Link
- Noise-adding Methods of Saliency Map as Series of Higher Order Partial Derivative
Junghoon Seo, Jeongyeol Choe, Jamyoung Koo, SeungHyun Jeon, Beomsu Kim, and Taegyun Jeon
ICML Workshop. 2018. Link
- Domain Adaptive Generation of Aircraft on Satellite Imagery via Simulated and Unsupervised Learning
Junghoon Seo, Seunghyun Jeon, and Taegyun Jeon
ACML Workshop. 2017. Link
- Multi-task Learning for Fine-grained Visual Classification of Aircraft
Seunghyun Jeon, Junghoon Seo and Taegyun Jeon
ACML Workshop. 2017.
수상 경력
- 2021년, GIST에서 최우수학부논문상으로 학부 졸업
- 2020년, xView2 Challange 5위
- 2018년, CVPR NTIRE Super-resolution Challange 4-5위
- 2018년, DOTA Challange 2위
- 2016년, KISTI National Supercomputing Competition 최우수상
- 2016년, the Qualcomm-GIST Innovation Award 수상
강연 및 발표
- Query as Representation: A Paradigm Shift in Computer Vision Caused by DETR @ Online. Nov 2022. YouTube (Korean)
- Recent XAI Trends in Deep Learning Era: (Under-)specification and Approaches @ KAERI. Feb 2020.
- Back to the Representation Learning with focusing on Visual Self-supervision @ ETRI. Jul 2019. Presentation (Korean)
- Deep Perceptual Super-resolution: Going Beyond Distortion @ KARI. Jul 2018. Presentation
리뷰어 활동
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- IEEE Transactions on Neural Networks and Learning Systems
- IEEE Geoscience and Remote Sensing Letters
- Several Conferences including CVPR, AISTATS, BMVC…
- Several Workshops on ICCV, ICLR, CVPR…
특허
- Method for detecting object, granted, 10-2364882
- Method for detecting on-the-fly disaster damage based on image, granted, 10-2255998
- Method for predicting frame using deep learning, application, 10-2023-0115699
- Method, system, and computing device for generating an alternative image of a satellite or aerial image in which an image of an area of interest is replaced, application, 10-2023-0075347
- Method of training object prediction models using ambiguous labels, application, 10-2022-0000169
- Method for detecting object, application, 10-2021-0168545
- Method to detect object, application, 10-2021-0135451
- Method to detect object, application, 10-2021-0135451
- Method for data clustering, application, 10-2020-0107206